

Thermochimica Acta 387 (2002) 109–114

thermochimica acta

www.elsevier.com/locate/tca

Short communication

Non-isothermal studies of the decomposition course of lanthanum oxalate decahydrate

Basma A.A. Balboul^{a,*}, A.M. El-Roudi^a, Ebthal Samir^a, A.G. Othman^b

^aChemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt ^bCeramic Department, Natural Research Center, Dokki, Cairo, Egypt

Received 28 June 2001; received in revised form 23 October 2001; accepted 25 October 2001

Abstract

The thermal decomposition of lanthanum oxalate hydrate La₂(C₂O₄)₃·10H₂O till 900 °C, in air, is investigated by non-isothermal gravimetry and differential thermal analyses. Intermediates and final solid products were characterized by X-ray diffraction (XRD) and IR-spectroscopy, the results show that $La_2(C_2O_4)_3.10H_2O$ dehydrates in stepwise at 86–360 °C and decomposes to La₂O₃ at 710 °C through different intermediates, La₂(C₂O₄)₃, La₂O(CO₃)₂ and La₂O₂CO₃, that form at 400, 425 and 470 °C, respectively. The final product La_2O_3 obtained at 800 °C has a surface area of 13.4 m²/g. The activation energy, ΔE of the observed thermal processes is obtained by the non-isothermal method. \odot 2002 Elsevier Science B.V. All rights reserved.

Keywords: La-oxalate; La-oxide; Decomposition; DTA; TG; IR; XRD; SBET

1. Introduction

The hexagonal [1] structure, lanthanum sesquioxide, $La₂O₃$, the final decomposition course studied in the present investigation, is the only stable oxide of lanthanum up to 2050 °C. La₂O₃ has numerous applications in various industrial and the technological fields. It is an important component of automobile exhaust—gas conversion [2], as a catalyst support in the formation of gas conversion catalyst [3,4], and as a catalyst of oxidative coupling of methane [5–7]. It is also used as a refractory oxide for calcium lights, optical glass [8], and in the formation of ceramics as a core for carbon arc electrodes [8].

The aim of the present study is to characterize the thermal decomposition of $La_2(C_2O_4)_3.10H_2O$ to the onset of $La₂O₃$ by means of thermogravimetry (TG) and differential thermal analysis (DTA). The solid products of the reaction were analyzed by IR-spectroscopy and X-ray diffractometry. The surface area (S_{BET}) was measured by N₂-adsorption isotherm. The activation energy, ΔE of the observed thermal processes is obtained by the non-isothermal method of thermoanalytical data analysis.

2. Experimental

2.1. Materials

Corresponding author. Tel.: $+20-86-34-52-31$;

fax: $+20-86-34-26-01$.

Lanthanum acetate tetrahydrate (LaAc, La(CH3- $COO₃·4H₂O$) (99.9% pure from Aldrich, USA),

0040-6031/02/\$ – see front matter \odot 2002 Elsevier Science B.V. All rights reserved. PII: S 0040-6031(01)00834-6

E-mail address: bsman64@yahoo.com (B.A.A. Balboul).

ammonium oxalate $((NH_4)_2C_2O_4)$, ammonium hydroxide (NH4OH) and glacial acetic acid were used for the preparation of oxalate.

2.2. Preparation of oxalate

Oxalates of La(III) from LaAc was prepared by dropwise addition of a hot 4% ammonium oxalate solution to a stirred hot solution of acetates after their dissolution in glacial acetic acid then neutralized to $pH = 7$ with (1:1) NH₄OH. The precipitates formed were left to stand at room temperature for 1 h, filtered off, washed with a diluted ammonium oxalate solution and finally dried at 80 \degree C to a constant weight.

The calcination products were obtained by heating at various temperatures $200-800$ °C, in a static atmosphere of air for 1 h. The calcination temperatures were chosen on basis of the thermal analysis results. The calcination products indicate throughout the text by the oxalate designation and the temperature applied, thus LaOx-800 indicates the calcination product at 800 $^{\circ}$ C. The abbreviation WL stands for weight loss.

2.3. Thermal analysis

TG and DTA of lanthanum oxalate were carried out on heating at various rates ($\theta = 5$, 10, 20, 30 °C/min) upto 900 °C in a dynamic atmosphere of air (20 ml/min) , using a 7-series thermal analysis model Perkin-Elmer Analyzer. Ten to fifteen milligrams portions of the test sample were used for the TG measurements, and highly sintered α -Al₂O₃ was the thermally inert reference for the DTA. Shifts experienced by the DTA peak temperature (T_{max}) as a function of the heating rate (θ) were implemented to calculate the activation energy, ΔE (kJ/mol) corresponding to each of the thermal events monitored, according to the following equation [9]:

$$
\Delta E = -\frac{R}{bd \log \theta d} \left(\frac{1}{T_{\max}}\right)
$$

where R is the gas constant ($= 8.314$ kJ/mol) and b is a unitless constant $(=0.457)$.

2.4. Infrared spectroscopy

IR-spectra were obtained at a resolution of 4 cm^{-1} , over the range $4000-400 \text{ cm}^{-1}$, using a model FT-IR- 410 JASCO (Japan). IR-spectra of LaOx and its solid calcination products were obtained from thin $(>20 \text{ mg/m}^2)$, lightly loaded $(<1\%)$ KBr-supported discs.

2.5. X-ray diffraction

X-ray diffraction (XRD) powder patterns were obtained with JSX-60P JEOL diffractometer (Japan). The X-ray generator is equipped with Ni-filter and generates a beam of Cu K α radiation ($\lambda = 1.5418$ Å). The operational settings for all the XRD scans are voltage: 40 kV, current: 30 mA, range: 4–60 $^{\circ}$ (2 θ), scanning speed: $8^{\circ}/$ min, slit width: 0.02° . For identification purpose, the relative intensities (I/I^0) and the d -spacing (A) are compared to standard diffraction patterns in the ASTM powder diffraction file [10].

2.6. N_2 -adsorption measurements

 N_2 sorption isotherms were determined volumetrically at -195 °C using a micro apparatus based on the design, which was described by Lippens et al. [11]. Test samples were outgassed at 220 $^{\circ}$ C for 6 h while evacuation at 10^{-5} Torr was performed. The reproducibility of the isotherm measurements was better than 97%.

3. Results and discussion

3.1. Characterization of the decomposition course

TG and DTA curves (Fig. 1) monitor 12 WL events (designated I–XIII) in the decomposition course of $LaOx·10H₂O$, only three of these events are exothermic (event IX, X and XI), whereas the others are endothermic. The WL effected via the first eight events (I–VIII) accounts for a stepwise dehydration of LaOx.10H₂O, in which event I and II (WL = 2.7% , $T_{\text{max}} = 86 \text{ °C}$ and (WL = 5.2%, $T_{\text{max}} = 110 \text{ °C}$), respectively, each involves the elimination of 1 mol of water, and thermal event III (WL = 9.9% , $T_{\text{max}} = 130$ °C) leads to the removal of another 2 mol of H₂O. Events (IV–VII) (WL = 12.5, 15, 17.5, 20%) and $(T_{\text{max}} = 155, 174, 195, 225 \text{ }^{\circ}\text{C}),$ respectively leads to the removal of another 4 mol of water. The corresponding activation energy values

Fig. 1. TG and DTA curves recorded for LaOx at the heating rates indicated, in a dynamic (20 ml/min) atmosphere of air.

(Table 1) are well within the range $\left(\frac{60 \text{ kJ}}{\text{mol}} \right)$ encountered for removal of weakly bound water of crystallization from analogous compounds [12]. The dihydrate thus formed, $LaOx.2H₂O$, persists upon

Table 1

Thermal processes; temperature $(^{\circ}C)$, composition and activation energy (ΔE , kJ/mol) proposed in each process for LaOx \cdot 10H₂O

Temperature $(^{\circ}C)$	Composition	ΔE (kJ/mol)
86	$La_2(C_2O_4)_3.9H_2O$	41
110	$La_2(C_2O_4)_3.8H_2O$	43
130	$La_2(C_2O_4)_3.7H_2O$	94
155	$La_2(C_2O_4)_3.6H_2O$	43
174	$La2(C2O4)3·5H2O$	51
195	$La_2(C_2O_4)_3.4H_2O$	54
225	$La2(C2O4)3·2H2O$	60
360	$La_2(C_2O_4)_3$	108
400	$La2(CO3)3$	127
425	$La_2O(CO_3)$	123
470	$La_2O_2CO_3$	145
710	La_2O_3	254

further heating to $300\degree C$ at which event VIII $(T_{\text{max}} = 360 \degree C)$ commences to operate. The total WL effected at 380 \degree C, (ca. 24%) accounts for the elimination of the remaining $2H₂O$ and, consequently, for the formation of the unhydrous lanthanum oxalate. The IR-spectrum of the solid phase LaOx-200 (Fig. 2) bears a great deal of similarity to that of unheated $La_2(C_2O_4)_3.10H_2O$ because both show absorption bands arising from oxalate anions (at $1750-640$ cm^{-1}) and water of hydration (at 3440 and 1640 cm^{-1}) [12,13]. However, the corresponding XRD pattern (Fig. 3) indicates that the products are amorphous and so water of hydration is very important for the coherency of LaOx crystal [14].

The LaOx-300 solid phase IR-spectrum (Fig. 2) shows that the $C_2O_4^{2-}$ species are weakened and different band structure including absorptions at 2350 cm⁻¹ and between 1800 and 400 cm⁻¹ which is similar in shape and position to characteristic absorptions CO_3^2 ²⁻ [12].

Fig. 2. IR-solid phase spectra for LaOx and its 1 h calcination products at the temperatures indicated.

Upon further heating event VIII is overlapped by two rapid exothermic WL processes (event IX, $T_{\text{max}} =$ 400 °C and event X, $T_{\text{max}} = 425$ °C). The WL for IX is 36.9% which is close to that theoretically calculated (36.6%) for the formation of $La_2(CO_3)_2$, as follows:

$$
La_2(C_2O_4)_3 \to La_2(CO_3)_3
$$
 (1)

The IR-spectrum of LaOx-400 shows relived of the δ HOH absorption of hydration of water [13], which is strong, broad absorption observed in the spectrum of both the parent, LaOx-200 and LaOx-300 between 1600 and 1750 cm^{-1} . The fundamental modes of vibration of the CO_3^2 species between 1800 and 400 cm^{-1} are weakened and different band structure begin to appear between 1600 and 1300 cm^{-1} which is similar in shape and position to characteristic absorptions of oxycarbonates [13]. XRD pattern for LaOx-400 (Fig. 3), reveals that the $La_2(CO_3)_3$ product inferred from the TG and IR-data is amorphous.

The WL for event X is 42.5% (expected WL is 42.7%) accounts for the conversion of $La_2(CO_3)$ ₃ to $La_2O(CO_3)_2$ which converts immediately to $La_2O_2CO_3$ (thermal event XI, WL = 48.4%, $T_{\text{max}} = 470 \degree C$) (Fig. 1), as follows:

$$
La_2(CO_3)_3 \rightarrow La_2O(CO_3)_2 \rightarrow La_2O_2CO_3 \tag{2}
$$

Events IX, X and XI must have overlapped between 420 and 550 °C. The similarity of the activation energy values (Table 1) for process IX, X and XI justifies their overlapping.

Fig. 3. X-ray powder diffractograms for LaOx and its 1 h calcination products at the temperatures indicated.

The IR-spectrum (Fig. 2) and XRD patterns (Fig. 3) support reaction (2). The IR-spectrum LaOx-550 displays strong absorptions between 1600 and 1300 cm^{-1} and also at 1060 and 870 cm^{-1} assignable to oxycarbonate species [13]. The absorption appearing at 730–500 cm^{-1} are related to La–O vibrational lattice mode [15].

The corresponding XRD pattern for LaOx-550 shows the pattern for crystalline $La_2O_2CO_3$ (ASTM no. 23-320).

At <600 \degree C, process XI slows down ending up with a weight invariant behavior at 670° C. Process XII takes place endothermally at $T_{\text{max}} = 710 \degree \text{C}$. The maximum WL determined (54.2%) agrees well with that expected (54.8%) to accompany the overall conversion of $LaOx·10H₂O$ to $La₂O₃$, i.e. process XII include the following pathway:

$$
La_2O_2CO_3 \rightarrow La_2O_3 \tag{3}
$$

Table 1 indicates that event XII has the highest activation energy ($\Delta E = 254$ kJ/mol) in the overall decomposition course of $LaOx-10H₂O$, a fact that justifies its lowest kinetics.

Fig. 4. N₂-adsorption isotherm obtained at -195 °C (using BET Method) for LaOx-800.

The IR-spectrum of LaOx-800 (Fig. 2), shows no detectable absorptions due to oxycarbonate species. The absorptions below 700 cm^{-1} are related to lattice vibration modes of La_2O_3 [15]. The weak bands around 1600, 1500 and 1380 cm^{-1} are most probably due to surface contamination by carbonate and moisture since it is known that $La₂O₃$ is a basic oxide [16].

In support, the XRD pattern of LaOx-800 detect a crystalline phase of La_2O_3 (ASTM no. 5-602).

3.2. Nitrogen sorption and surface area measurement of La_2O_3

The N_2 -adsorption isotherm of LaOx-800 is shown in Fig. 4. The isotherm generally belongs to type IVof BET classification [17]. The desorption isotherm closed at $P/P^0 > 0.4$, which give indication the hysteresis loop is nearly of type H3 [17]. The loop suggested that the surface pores are of slit-shaped or interplating [18]. The S_{BET} value determined was 13.4 m^2/g .

4. Conclusion

The results of the present studies allow the following conclusions to be drawn:

1. The thermal decomposition course of hydrated lanthanum oxalate may include the following path ways:

$$
La_{2}(C_{2}O_{4})_{3}\cdot10H_{2}O\stackrel{I}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\cdot9H_{2}O\\ \stackrel{II}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\cdot8H_{2}O\stackrel{III}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\cdot6H_{2}O\\ \stackrel{IV}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\cdot5H_{2}O\stackrel{V}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\cdot4H_{2}O\\ \stackrel{VI}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\cdot3H_{2}O\stackrel{VII}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\cdot2H_{2}O\\ \stackrel{VIII}{\rightarrow}La_{2}(C_{2}O_{4})_{3}\stackrel{IX}{\rightarrow}La_{2}(CO_{3})_{3}\stackrel{X}{\rightarrow}La_{2}O(CO_{3})_{2}\\ \stackrel{XI}{\rightarrow}La_{2}O_{2}CO_{3}\stackrel{XII}{\rightarrow}La_{2}O_{3}.
$$

- 2. The lower hydrate oxalate (dihydrate) is thermally stable but the unhydrous oxalate is unstable and the water of hydration is responsible of the crystal coherency of LaOx.
- 3. Lanthanum carbonates $La_2(CO_3)$ ₃ (amorphous), $La_2O(CO_3)_2$ (amorphous), $La_2O_2CO_3$ (crystalline), were formed as intermediates during the decomposition of lanthanum oxalate hydrate but with no region of stability.
- 4. A crystalline phase of $La₂O₃$ were detectable as the final decomposition product of $La_2(C_2O_4)_3$.
- 5. La₂O₃ obtained at 800 °C has a surface area of $13.4 \text{ m}^2/\text{g}$.

References

[1] P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxide, Wiley, New York, 1972, p. 289

- [2] M. Hideaki, S. Hirofami, S. Hideo, F. Yoshiyasu, Ind. Eng. Chem. Proc. Res. Dev. 25 (2) (1988) 202.
- [3] D. Andriamasinoro, R. Kieffer, A. Kiennemann, P. Poix, Appl. Catal. 106 (1993) 201.
- [4] M.P. Rosynek, D.T. Magnison, J. Catal. 46 (1977) 402.
- [5] K. Okabe, K. Sayama, H. Kusama, H. Arakawa, Bull. Chem. Soc. Jpn. 67 (1994) 2894.
- [6] K. Otsuka, K. Jinno, A. Morikawa, J. Catal. 100 (1986) 353.
- [7] H. Arakawa, Bull. Chem. Soc. Jpn. 21 (11) (1994) 31.
- [8] N.I. Sax and R.J. Lewis (Eds.), Hawley's Condensed Chemical Dictionary, 11th Edition, Reinhold, New York, 1987, p. 683.
- [9] J.H. Flynn, J. Thermal. Anal. 27 (1983) 45.
- [10] J.V. Smith (Ed.), X-ray Powder Data File, American Society for Testing and Materials, PA, USA, 1960.
- [11] B.C. Lippens, B.G. Linsen, J.H. De Boer, J. Catal. 3 (1964) 32.
- [12] M.E. Brown, D. Dollimore, A.K. Galwey, in: C.H. Bamford, C.F.H. Tipper (Eds.), Chemical Kinetics, Reaction in the Solid State, Elsevier, Amsterdam, 1980.
- [13] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1970, p. 253.
- [14] G.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths, London, 1975, p. 65.
- [15] J.A. Goldsmith, S.D. Ross, Spectrochem. Acta Part A 23 (1967) 1909.
- [16] K. Tanabe, K. Misono, Y. Ono, H. Hatori, New Solid Acids and Bases, Kodansha, Tokyo; Elseveir, Amsterdam, 1989, pp. 41–47.
- [17] S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, 2nd Edition, Academic Press, London, 1982.
- [18] K.S.W. Sing, Pure Appl. Chem. 54 (1982) 2201.